

LOCHLUICHART WIND FARM EXTENSION II APPENDIX 5.A

APRIL 2021

INFINERGY

TABLE OF CONTENTS

PAYB	BACK TIME AND CO2 EMISSIONS	2
РАҮВ	BACK TIME CHARTS	3
INPU	Т ДАТА	5
1	WINDFARM CO2 EMISSION SAVING	.12
2	CO2 LOSS DUE TO TURBINE LIFE	13
3	CO2 LOSS DUE TO BACKUP	14
4	LOSS OF CO ₂ FIXING POTENTIAL	15
5	LOSS OF SOIL CO ₂	16
6	CO2 LOSS BY DOC AND POC LOSS	.19
7	FORESTRY CO2 LOSS	.20
8	CO2 GAIN – SITE IMPROVEMENT	.21

PAYBACK TIME AND CO₂ EMISSIONS

1. Windfarm CO2 emission saving over	Exp.	Min.	Max.
coal-fired electricity generation (t CO2 / yr)	50,676	50,657	50,696
grid-mix of electricity generation (t CO2 / yr)	13,968	13,963	13,973
fossil fuel-mix of electricity generation (t CO2 /			
yr)	24,787	24,778	24,797
Energy output from windfarm over lifetime (MWh)	2,203,315	2,202,474	2,204,156

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (e.g., manufacture, construction, decommissioning)	20,789	20,789	20,789
3. Losses due to backup	18,922	18,922	18,922
4. Losses due to reduced carbon fixing potential	208	194	222
5. Losses from soil organic matter	8,226	7,666	8,865
6. Losses due to DOC & POC leaching	3	1	21
7. Losses due to felling forestry	1,077	741	1,420
Total losses of carbon dioxide	49,225	48,312	50,238

8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	0	0	0
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	-1,200	-1,200	-925
8d. Change in emissions due to removal of drainage from foundations & hardstanding	-145	0	-151
Total change in emissions due to improvements	-1,345	-1,200	-1,076

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	47,880	47,235	49,038
Carbon Payback Time			
coal-fired electricity generation (years)	0.9	0.9	1
grid-mix of electricity generation (years)	3.4	3.4	3.5
fossil fuel-mix of electricity generation (years)	1.9	1.9	2
Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)	6.12	7.12	7.4
Ratio of CO2 eq. emissions to power generation (g/kWh) (for info. only)	21.73	21.43	22.26

PAYBACK TIME CHARTS

INFINERGY

INPUT DATA

1 WINDFARM CO₂ EMISSION SAVING

Capacity Factor - Direct Input	Exp.	Min.	Max.
Capacity factor (%)	26.2	26.2	26.2
		-	
Annual energy output from windfarm (MW/yr)	Exp.	Min.	Max.
RESULTS			
Emissions saving over coal-fired electricity generation (tCO2/yr)	50,676	50,657	50,696
Emissions saving over grid-mix of electricity generation (tCO2/yr)	13,968	13,963	13,973
Emissions saving over fossil fuel - mix of electricity generation (tCO2/yr)	24,787	24,778	24,797

2 CO₂ LOSS DUE TO TURBINE LIFE

Calculation of emissions with relation to			
installed capacity	Exp.	Min.	Max.
Emissions due to turbine from energy output (t			
CO2)	4017	4017	4017
Emissions due to cement used in construction (t			
CO2)	702	702	702

RESULTS	Exp.	Min.	Max.
Losses due to turbine life (manufacture, construction, etc.) (t CO2)	20789	20789	20789
Additional CO2 payback time of windfarm due to turbine life			
coal-fired electricity generation (months)	5	5	5
grid-mix of electricity generation (months)	18	18	18
fossil fuel - mix of electricity generation			
(months)	10	10	10

3 CO₂ LOSS DUE TO BACKUP

	Exp.	Min.	Max.
Reserve energy (MWh/yr)	10,512	10,512	10,512
Annual emissions due to backup from fossil fuel-			
mix of electricity generation (tCO2/yr)	473	473	493
RESULTS			
Total emissions due to backup from fossil fuel-mix			
of electricity generation (tCO2)	18,922	18,922	18,922

4 LOSS OF CO₂ FIXING POTENTIAL

	Exp.	Min.	Max.
Area where carbon accumulation by bog plants is			
lost (ha)	5.25	5.22	5.27
Total loss of carbon accumulation up to time of			
restoration (tCO2 eq./ha)	40	37	42
RESULTS			
Total loss of carbon fixation by plants at the site (t			
C02)	208	194	222
Additional CO2 payback time of windfarm due to los	s of CO2 fix	ing potentia	al
coal-fired electricity generation (months)	0	0	0
grid-mix of electricity generation (months)	0	0	0
fossil fuel - mix of electricity generation			
(months)	0	0	0

5 LOSS OF SOIL CO₂

5. Loss of CO ₂	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2 equiv.)	7962.36	7428.73	8565.8
CO2 loss from drained peat (t CO2 equiv.)	263.84	236.97	298.71
RESULTS			
Total CO2 loss from peat (removed + drained) (t			
CO2 equiv.)	8226.2	7665.69	8864.52
Additional CO2 payback time of windfarm due to los	s of soil CO	2	
coal-fired electricity generation (months)	1.95	1.82	2.1
grid-mix of electricity generation (months)	7.07	6.59	7.61
fossil fuel - mix of electricity generation			
(months)	3.89	3.71	4.29

5a. Volume of peat removed	Exp.	Min.	Max.	
Peat removed from borrow pits				
Area of land lost in borrow pits (m2)	23560	23560	23560	
Volume of peat removed from borrow pits (m3)	16492	16492	16492	
Peat removed from turbine foundations				
Area of land lost in foundation (m2)	2645	2645	2645	
Volume of peat removed from foundation area (m3)	1322.5	1322.5	1322.5	
Peat removed from hard-standing				
Area of land lost in hard-standing (m2)	5000	5000	5000	
Volume of peat removed from hard-standing area (m3)	3000	3000	3000	
Peat removed from access tracks				
Area of land lost in floating roads (m2)	825	819.5	830.5	
Volume of peat removed from floating roads (m3)	412.5	327.8	498.3	
Area of land lost in excavated roads (m2)	0	0	0	
Volume of peat removed from excavated roads (m3)	0	0	0	
Area of land lost in rock-filled roads (m2)	13435	13430	13440	
Volume of peat removed from rock-filled roads (m3)	0	0	0	
Total area of land lost in access tracks (m2)	14260	14249.5	14270.5	
Total volume of peat removed due to access tracks (m3)	412.5	327.8	498.3	
RESULTS				
Total area of land lost due to windfarm construction (m2)	45465	45454.5	45475.5	
Total volume of peat removed due to windfarm				
construction (m ³)	21227	21142.3	21312.8	

5b. CO ₂ loss from removed peat	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2)	9339.96	8736.78	9963.82
CO2 loss from undrained peat left in situ (t CO2)	1377.61	1308.06	1398.02
RESULTS			
CO2 loss attributable to peat removal only (t CO2)	7962.36	7428.73	8565.8

5c. Volume of peat drained	Exp.	Min.	Max.
Total area affected by drainage around borrow pits			
(m2)	2792.48	2700	2885.12
Total volume affected by drainage around borrow			
pits (m3)	977.37	945	1009.79
Peat affected by drainage around turbine			
foundation and hardstanding			
Total area affected by drainage of foundation and			
hardstanding area (m2)	3788.2	3660	3916.8
Total volume affected by drainage of foundation			
and hardstanding area (m3)	1136.46	1098	1175.04
Peat affected by drainage of access tracks			
Total area affected by drainage of access			
track(m2)	438.75	430.1	447.44
Total volume affected by drainage of access			
track(m3)	109.69	107.53	111.86
Peat affected by drainage of cable trenches			
Total area affected by drainage of cable			
trenches(m2)	0	0	0
Total volume affected by drainage of cable			
trenches(m3)	0	0	0
Drainage around additional peat excavated			
Total area affected by drainage (m2)	0	0	0
Total volume affected by drainage (m3)	0	0	0
RESULTS			
Total area affected by drainage due to windfarm			
(m2)	7019.43	6790.1	7249.36
Total volume affected by drainage due to			
windfarm (m3)	2223.52	2150.53	2296.69

5d. CO ₂ loss from drained peat	Exp.	Min.	Max.	
Calculations of C Loss from Drained Land if Site is N	OT Restore	d after		
Decommissioning				
Total GHG emissions from Drained Land (t CO2				
equiv.)	978.36	888.68	1073.71	
Total GHG emissions from Undrained Land (t CO2				
equiv.)	714.52	651.71	775	
Calculations of C Loss from Drained Land if Site IS				
Restored after Decommissioning				
Losses if Land is Drained				
CH4 emissions from drained land (t CO2 equiv.)	-22.39	-23.75	-23.28	
CO2 emissions from drained land (t CO2)	313.61	290.2	332.04	
Total GHG emissions from Drained Land (t CO2				
equiv.)	978.36	888.68	1073.71	
Losses if Land is Undrained				
CH4 emissions from undrained land (t CO2 equiv.)	1.86	-4	6.34	
CO2 emissions from undrained land (t CO2)	210.83	199.4	216.52	
Total GHG emissions from Undrained Land (t CO2				
equiv.)	714.52	651.71	775	
RESULTS				
Total GHG emissions due to drainage (t CO2				
equiv.)	263.84	236.97	298.71	

5e. Emission Rates from Soils	Exp.	Min.	Max.
Calculations following IPCC default methodology			
Flooded period (days/year)	178	178	178
Annual rate of methane emission (t CH4-C/ha			
year)	0.04	0.04	0.04
Annual rate of carbon dioxide emission (t CO2/ha			
year)	35.2	35.2	35.2
Calculations following ECOSSE based methodology	r		
Total area affected by drainage due to wind farm			
construction (ha)	0.7	0.68	0.72
Average water table depth of drained land (m)	0.32	0.32	0.32
Selected emission characteristics following site			
specific methodology			
Rate of carbon dioxide emission in drained soil (t		a = 1	
CO2/ha year)	9.93	9.71	9.96
Rate of carbon dioxide emission in undrained soil	2.20	2.40	2.05
(t CU2/fla year)	3.20	3.48	2.85
Rate of methane emission in drained soil (t CH4-	0.02	0.02	0.02
C/IId yed) Data of mothana amission in undrained call (t	-0.02	-0.03	-0.02
CH4-C/ba year)	0.03	0.02	0.04
	0.05	0.02	0.04
Selected rate of carbon diovide emission in drained			
soil († CO2/ha year)	9 93	9 71	9 96
Selected rate of carbon dioxide emission in	5.55	5.71	5.50
undrained soil (t CO2/ha vear)	3.26	3.48	2.85
Selected rate of methane emission in drained soil			
(t CH4-C/ha year)	-0.02	-0.03	-0.02
Selected rate of methane emission in undrained			
soil (t CH4-C/ha year)	0.03	0.02	0.04

6 CO₂ LOSS BY DOC AND POC LOSS

	Exp.	Min.	Max.
Gross CO2 loss from restored drained land (t CO2)	0	0	0
Gross CH4 loss from restored drained land (t CO2			
equiv.)	0	0	0
Gross CO2 loss from improved land (t CO2)	0	0	0
Gross CH4 loss from improved land (t CO2 equiv.)	113.49	93.58	471.64
Total gaseous loss of C (t C)	2.78	2.29	11.53
Total C loss as DOC (t C)	0.72	0.16	4.61
Total C loss as POC (t C)	0.22	0.09	1.15
RESULTS			
Total CO2 loss due to DOC leaching (t CO2)	2.65	0.59	16.92
Total CO2 loss due to POC leaching (t CO2)	0.81	0.34	4.23
Total CO2 loss due to DOC & POC leaching (t CO2)	3.46	0.92	21.15
Additional CO2 payback time of windfarm due to DO	C & POC		
coal-fired electricity generation (months)	0	0	0
grid-mix of electricity generation (months)	0	0	0
fossil fuel - mix of electricity generation			
(months)	0	0	0

7 FORESTRY CO₂ LOSS

	Exp.	Min.	Max.
Area of forestry plantation to be felled (ha)	2.04	2.02	2.06
Carbon sequestered (t C ha-1 yr-1)	3.6	2.5	4.7
Lifetime of windfarm (years)	40	40	40
Carbon sequestered over the lifetime of the windfarm (t C ha-1)	144	100	188
Total carbon loss due to felling of forestry (t			
CO2)	1077.13	740.67	1420.04
Additional CO2 payback time of windfarm due to management of forestry			
coal-fired electricity generation (months)	0.26	0.18	0.34
grid-mix of electricity generation (months)	0.93	0.64	1.22
fossil fuel - mix of electricity generation (months)	0.52	0.36	0.69

8 CO₂ GAIN – SITE IMPROVEMENT

Degraded Bog	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before			
improvement (m)	0	0	0
Depth of peat above water table after			
improvement (m)	0	0	0
2. Losses with improvement	I		
Improved period (years)	15	15	15
Selected annual rate of methane emissions (t			
CH4-C ha-1 yr-1)	0.467	0.464	0.467
CH4 emissions from improved land (t CO2	-		
equiv.)	0	0	0
Selected annual rate of carbon dioxide emissions	1 050	2 0 7 2	1 0 2 2
(t CO2 na-1 yr-1)	-1.859	-2.072	-1.832
cuz emissions from improved land (t cuz	0	0	0
Total GHG emissions from improved land (t CO2	0	0	0
eqiv.)	0	0	0
3. Losses without improvement	•		
Improved period (years)	15	15	15
Selected annual rate of methane emissions (t			
CH4-C ha-1 yr-1)	0.467	0.464	0.467
CH4 emissions from improved land (t CO2			
equiv.)	0	0	0
Selected annual rate of carbon dioxide emissions			
(t CO2 ha-1 yr-1)	-1.859	-2.072	-1.832
CO2 emissions from unimproved land (t CO2			0
equiv.)	0	0	0
Total GHG emissions from unimproved land (t	0	0	0
	0	0	0
RESULTS			
4. Reduction in GHG emissions due to improvemen	it of site		
Reduction in GHG emissions due to improvement	_	-	
(t CO2 equiv.)	0	0	0

Felled Forestry	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before			
improvement (m)	0	0	0
Depth of peat above water table after			
improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	18	18	18
Selected annual rate of methane emissions (t			
CH4-C ha-1 yr-1)	0.467	0.464	0.467
CH4 emissions from improved land (t CO2			
equiv.)	0	0	0

Selected annual rate of carbon dioxide emissions (t CO2 ha-1 vr-1)	-1.859	-2.072	-1.832		
CO2 emissions from improved land (t CO2		-			
equiv.)	0	0	0		
Total GHG emissions from improved land (t CO2					
eqiv.)	0	0	0		
3. Losses without improvement					
Improved period (years)	18	18	18		
Selected annual rate of methane emissions (t					
CH4-C ha-1 yr-1)	0.467	0.464	0.467		
CH4 emissions from improved land (t CO2					
equiv.)	0	0	0		
Selected annual rate of carbon dioxide emissions					
(t CO2 ha-1 yr-1)	-1.859	-2.072	-1.832		
CO2 emissions from unimproved land (t CO2					
equiv.)	0	0	0		
Total GHG emissions from unimproved land (t					
CO2 eqiv.)	0	0	0		
RESULTS	RESULTS				
4. Reduction in GHG emissions due to improvemen	nt of site				
Reduction in GHG emissions due to improvement					
(t CO2 equiv.)	0	0	0		

Borrow Pits	Exp.	Min.	Max.	
1. Description of site				
Area to be improved (ha)	4.5	4.5	4.5	
Depth of peat above water table before				
improvement (m)	0.7	0.7	0.7	
Depth of peat above water table after				
improvement (m)	0.1	0.11	0	
2. Losses with improvement	1			
Improved period (years)	15	15	15	
Selected annual rate of methane emissions (t				
CH4-C ha-1 yr-1)	0.112	0.093	0.467	
CH4 emissions from improved land (t CO2				
equiv.)	113.488	93.579	471.641	
Selected annual rate of carbon dioxide				
emissions (t CO2 ha-1 yr-1)	0.527	0.659	-1.832	
CO2 emissions from improved land (t CO2				
equiv.)	18.231	22.784	-63.369	
Total GHG emissions from improved land (t CO2				
eqiv.)	131.719	116.363	408.272	
3. Losses without improvement				
Improved period (years)	15	15	15	
Selected annual rate of methane emissions (t				
CH4-C ha-1 yr-1)	-0.033	-0.036	-0.033	
CH4 emissions from improved land (t CO2				
equiv.)	0	0	0	
Selected annual rate of carbon dioxide				
emissions (t CO2 ha-1 yr-1)	19.722	19.509	19.748	
CO2 emissions from unimproved land (t CO2				
equiv.)	1331.22	1316.86	1333.02	

INFINERGY

Total GHG emissions from unimproved land (t			
CO2 eqiv.)	1331.22	1316.86	1333.02
RESULTS			
4. Reduction in GHG emissions due to improveme	ent of site		
Reduction in GHG emissions due to			
improvement (t CO2 equiv.)	1199.5	1200.5	924.745

Foundations & Hardstanding	Exp.	Min.	Max.	
1. Description of site				
Area to be improved (ha)	0.379	0	0.392	
Depth of peat above water table before				
improvement (m)	0.62	0.61	0.63	
Depth of peat above water table after				
improvement (m)	0.62	0.61	0.63	
2. Losses with improvement	1	1		
Improved period (years)	39.9	39.9	39.9	
Selected annual rate of methane emissions (t				
CH4-C ha-1 yr-1)	-0.033	-0.036	-0.033	
CH4 emissions from improved land (t CO2	7 420		7.614	
equiv.)	-7.438	0	-7.614	
Selected annual rate of carbon dioxide	10 607	10 217	10 064	
CO2 emissions from improved land (t CO2	10.007	10.517	10.004	
	144 708	0	151 041	
Total GHG emissions from improved land (t CO2	111.700	0	151.011	
eqiv.)	137.27	0	143.426	
3. Losses without improvement				
Improved period (years)	39.9	39.9	39.9	
Selected annual rate of methane emissions (t				
CH4-C ha-1 yr-1)	-0.033	-0.036	-0.033	
CH4 emissions from improved land (t CO2				
equiv.)	0	0	0	
Selected annual rate of carbon dioxide	10.007		10.001	
emissions (t CO2 ha-1 yr-1)	18.687	18.317	18.864	
CO2 emissions from unimproved land (t CO2	202.452	0	204 012	
equiv.)	282.452	0	294.812	
	202 452	0	204 912	
	202.432	0	294.012	
KESULIS				
4. Reduction in GHG emissions due to improveme	ent of site			
Reduction in GHG emissions due to	145 101	0	151 205	
improvement (t CO2 equiv.)	145.181	0	151.385	